PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans, Confers Oxidative Stress Tolerance to Escherichia coli

نویسندگان

  • Sun-Ha Park
  • Harinder Singh
  • Deepti Appukuttan
  • Sunwook Jeong
  • Yong Jun Choi
  • Jong-Hyun Jung
  • Issay Narumi
  • Sangyong Lim
چکیده

Escherichia coli is a representative microorganism that is frequently used for industrial biotechnology; thus its cellular robustness should be enhanced for the widespread application of E. coli in biotechnology. Stress response genes from the extremely radioresistant bacterium Deinococcus radiodurans have been used to enhance the stress tolerance of E. coli. In the present study, we introduced the cold shock domain-containing protein PprM from D. radiodurans into E. coli and observed that the tolerance to hydrogen peroxide (H2O2) was significantly increased in recombinant strains (Ec-PprM). The overexpression of PprM in E. coli elevated the expression of some OxyR-dependent genes, which play important roles in oxidative stress tolerance. Particularly, mntH (manganese transporter) was activated by 9-fold in Ec-PprM, even in the absence of H2O2 stress, which induced a more than 2-fold increase in the Mn/Fe ratio compared with wild type. The reduced production of highly reactive hydroxyl radicals (·OH) and low protein carbonylation levels (a marker of oxidative damage) in Ec-PprM indicate that the increase in the Mn/Fe ratio contributes to the protection of cells from H2O2 stress. PprM also conferred H2O2 tolerance to E. coli in the absence of OxyR. We confirmed that the H2O2 tolerance of oxyR mutants reflected the activation of the ycgZ-ymgABC operon, whose expression is activated by H2O2 in an OxyR-independent manner. Thus, the results of the present study showed that PprM could be exploited to improve the robustness of E. coli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hsp20, a small heat shock protein of Deinococcus radiodurans, confers tolerance to hydrogen peroxide in Escherichia coli.

The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiationresistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide (H2O2) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis....

متن کامل

IrrE, a Global Regulator of Extreme Radiation Resistance in Deinococcus radiodurans, Enhances Salt Tolerance in Escherichia coli and Brassica napus

BACKGROUND Globally, about 20% of cultivated land is now affected by salinity. Salt tolerance is a trait of importance to all crops in saline soils. Previous efforts to improve salt tolerance in crop plants have met with only limited success. Bacteria of the genus Deinococcus are known for their ability to survive highly stressful conditions, and therefore possess a unique pool of genes conferr...

متن کامل

FrnE, a cadmium-inducible protein in Deinococcus radiodurans, is characterized as a disulfide isomerase chaperone in vitro and for its role in oxidative stress tolerance in vivo.

Deinococcus radiodurans R1 exposed to a lethal dose of cadmium shows differential expression of a large number of genes, including frnE (drfrnE) and some of those involved in DNA repair and oxidative stress tolerance. The drfrnE::nptII mutant of D. radiodurans showed growth similar to that of the wild type, but its tolerance to 10 mM cadmium and 10 mM diamide decreased by ~15- and ~3-fold, resp...

متن کامل

Functional characterization of a DNA repair polymerase from a radiation resistant bacterium, Deinococcus radiodurans

Cells exposed to DNA damaging agents, produce different types of structural changes in the chromosome. Repair of these lesions requires synthesis of new DNA molecules, catalysed by specific DNA polymerases. A putative DNA polymerase has been characterized, for its role in DNA damage repair and radiation resistance in D. radiodurans, a bacterium best known for its extraordinary resistance to  ...

متن کامل

An Antioxidant from a Radioresistant Bacterium: its role in Radiation Resistance beyond Oxidative Stress Tolerance

In living cells, reactive oxygen/nitrogen species (ROS/RNS) are produced as the byproducts of metabolic processes during aerobic respiration or during growth under unfavorable conditions. Organisms have evolved different strategies, involving both antioxidant enzymes and non-enzymatic antioxidant molecules to detoxify these species. These reactive molecules, if not detoxified, can cause oxidati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016